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Abstract 

Hotspring waters have traditionally been recognized for their therapeutic benefits. More recently, high-altitude 
hotsprings have received attention for astrobiological studies because they replicate several parameters of extreme 
conditions that once occurred on early Mars. Investigation of such hotspring environments can provide us with more 
relevant biomarker tools to study the search for possible extinct life on Mars that existed in similar environments. This 
study presents the first qualitative data (semiquantitative) on organic compounds’ origin and distribution in Ladakh’s 
high-altitude hotspring waters. The study was conducted on the Chumathang, Panamik, Changlung, and Puga 
hotspring sites with thermal water temperatures and pH ranging from 50.4° to 84.9 °C and 7.01 to 8.08, respectively. 
These sites were dominated by bacterially produced organic compounds, mainly n-alkanes, esters, alcohols, carbox-
ylic acids, and alkenes. Non-distinguishable thermogenic abiotic organic compounds may represent a minor fraction 
of low molecular weight n-alkanes (C12 and C14). A semiquantitative understanding of organic compounds based 
on peak area percentage exhibits that larger proportions of organic compounds in the thermal waters of these sites 
were dominated by a diverse range of bioactive compounds in response to various extreme environmental factors. 
Compared to the low-altitude hotspring waters, the high-altitude hotspring waters contain a significantly higher 
number of bioactive compounds. These compounds are stable both chemically and physically in the extreme envi-
ronments commonly found in high-altitude hydrothermal environments, which makes them promising candidates 
as biomarkers for the search for early life in Mars’ hydrothermal deposits. 
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1  Introduction
Since their discovery in the late 1970s (Corliss et al. 1979), 
mid-oceanic ridge hydrothermal systems have been con-
sidered favorable locations for the abiotic synthesis of 
organic compounds (Ingmanson and Dowler 1977) with 

the potential to understand the abiogenic steps in the ori-
gin of life (Corliss et al. 1981; Baross and Hoffman 1985; 
Macleod et  al. 1994). This idea of a hydrothermal sys-
tem as a “cradle of earliest life on the Earth” was initially 
developed for the alkaline vents where the serpentiniza-
tion reaction also yields hydrogen gas, and the water tem-
perature is well within the range that microbiological life 
can withstand (Martin and Russell 2003, 2007; Lane and 
Martin 2012; Barge et  al. 2017). A range of ultramafic-
hosted mid-oceanic ridge hydrothermal systems have 
been found to contain traces of what appear to be abio-
genic methane and straight-chain hydrocarbons (Charlou 
et al. 2000, 2002; Proskurowski et al. 2008). These systems 
were recorded to contain various organic compounds, 
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such as aliphatic, mono-, and polyaromatic hydrocar-
bons (HC), carboxylic acids, and amino acids (Konn et al. 
2009, 2011, 2015; Shulga and Peresypkin 2012; Aubrey 
et  al. 2009; Holm and Charlou 2001; Lang et  al. 2010; 
Klevenz et  al. 2010; McCollom et al. 2015; Reeves et  al. 
2014; Raznitsin et al. 2018; Sorokhtin et al. 2018; Simo-
neit 2004).

However, more recently, especially after Damer and 
Deamer (2020) hypothesized that terrestrial hotsprings 
offer a better physicochemical environment [wet–dry 
cycles, K+/Na+ ratio close to cytoplasm composition 
(seawater K+/Na+ ratio is orders of magnitude higher 
than the cell cytoplasm), i.e., freshwater] for the synthe-
sis and polymerization of life essential organic molecules 
than the subseafloor hydrothermal system, terrestrial 
hotsprings have become a renewed target for research 
to understand the prebiotic soup and the origin of life. 
The information on the organic composition of hot-
spring waters or vapor condensate is available from only 
a few numbers of studies conducted in Spain (González-
Barreiro et al. 2009), Hungary (Kárpáti et al. 1999), Italy 
(Gioia et al. 2006), Japan (Suda et al. 2022, 2014), Mexico 
(Sánchez-Avila et  al. 2021), Russia (Poturay and Kom-
panichenko 2019; Kompanichenko et al. 2016; Kompan-
ichenko and Poturay 2022), USA (Clifton et al. 1990), and 
New Zealand (Czochanska et al. 1986).

A study of hydrothermal systems in Kamchatka (Rus-
sia) revealed the presence of glycine of abiogenic origin 
in its vapor–water mixture’s condensates (Mukhin et al. 
1979). Low molecular weight alkanes with a composi-
tion dominated by n-C10–C14 in the same hydrother-
mal system were suggested to have a thermogenic origin 
(Poturay and Kompanichenko 2019). Furthermore, Kom-
panichenko et  al. (2015) found a homologous series of 
biologically essential compounds: carboxylic acids, alco-
hols, ethers, aldehydes, and ketones from the Uzon cal-
dera of Kamchatka. A larger fraction of these organic 
compounds belongs to the carboxylic acid series, i.e., 
octanoic acid (C8) nonanoic (C9), decanoic acid (C10), 
dodecanoic (C12), tridecanoic acid (C13), tetradeca-
noic (C14), hexadecanoic (C16), and octadecanoic (C18) 
(Kompanichenko 2020). Carboxylic acids are the vital 
hydrophobic groups of phospholipids that play a crucial 
role in building biological membranes. Apel et al. (2002) 
suggested that if carboxylic acids have nine or more 
carbons in their hydrocarbon chains, they can organ-
ize into membranous vesicles. Therefore, the presence 
of long-chain monocarboxylic acids in hydrothermal 
water is particularly interesting due to their biological 
significance.

High-altitude hotsprings serve as unique hydrothermal 
environments that harbor diverse thermophilic microor-
ganisms capable of producing a wide range of secondary 

metabolites also known as bioactive organic compounds 
(Al-Dhabi et  al. 2016; Prihantini et  al. 2018; Deamer 
et al. 2019; Tyagi et al. 2024, 2021; Yan et al. 2017; Ais-
saoui et al. 2021; Al-Daghistani et al. 2021). These ther-
mophiles, thriving at temperatures above 45 °C, generate 
secondary metabolites such as amines, alkaloids, fatty 
acids, glycoproteins, and phenols, many of which exhibit 
significant medicinal properties, including antifungal, 
antibacterial, anticancer, and anti-inflammatory effects 
(Prihantini et al. 2018; Al-Daghistani et al. 2021). While 
these compounds have been extensively studied in labo-
ratory cultures, their presence and role in natural hydro-
thermal ecosystems remain less explored (Al-Dhabi et al. 
2016; Prihantini et  al. 2018; Deamer et  al. 2019; Tyagi 
et al. 2024, 2021; Yan et al. 2017; Aissaoui et al. 2021; Al-
Daghistani et al. 2021). Investigating these biomolecules 
in extreme terrestrial environments can provide valu-
able insights into potential biosignatures for astrobio-
logical studies, particularly in the search for life on Mars, 
where hydrothermal systems may have once supported 
microbial activity. This study aims to analyze organic bio-
markers from high-altitude hotsprings to enhance our 
understanding of life’s adaptability in extreme conditions 
and its implications for extraterrestrial habitability.

Ladakh is a high-altitude cold desertic region located 
in the Trans-Himalaya that presents geomorphological 
features and several extreme environmental parameters, 
such as a thin atmosphere, subzero temperatures for 
around six months, the presence of glaciers and perma-
frost, and high UV exposure (Pandey et al. 2020; Ansari 
et al. 2020). That makes it one of the most suitable regions 
for Martian analog studies. Hotsprings in this region are 
one such analog site that can help not only to understand 
prebiotic (abiotic) organic synthesis but also to get an 
idea of possible biogenic organic compounds that might 
have been preserved in the hydrothermal silica and car-
bonate deposits widely present on the Martian surface 
(Cady et  al. 2018; Brown et  al. 2010; Niles et  al. 2013; 
Michalski and Niles 2010; Michalski et  al. 2018; Parnell 
et  al. 2002). To our knowledge, this study is the first to 
detail the origin and distribution of organic compounds 
in the thermal waters of high-altitude Trans-Himalayan 
Ladakh hotspring sites.

2 � Geology of Ladakh
Ladakh is situated in the Trans-Himalayan India amidst 
the Kohistan–Ladakh batholith at an average altitude 
of 11,482 feet. This cold and arid desert region lies on 
the Ladakh batholith and is surrounded by the Karako-
ram batholith in the north. The Shyok suture zone runs 
between these two batholith units (Fig.  1), while the 
Indus suture zone borders the Ladakh batholith along 
the southwestern margins. The Tethyan Himalayas 
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are further south of the Indus suture zone (Thakur and 
Rawat 1992; Bandyopadhyay 1990).

Extensive bodies of dominantly granites and high-
grade metamorphic rocks form the Karakoram batho-
lith. These granites of the Karakoram batholith (Fig. 1) 
intrude south Eurasian Palaeozoic to Triassic sedimen-
tary sequences (Crawford and Searle 1992; Debon et al. 
1987; Srimal 1986; Weinberg and Searle 1998; Sinha 

et al. 1997). The dextral Karakoram fault on the north-
ern side separates the Shyok suture zone (SSZ) from the 
Karakoram batholith (Thanh et  al. 2010). A sedimen-
tary unit consisting mainly of sandstone, conglomerate, 
and minor Albian limestone makes the upper mem-
ber of the Shyok Formation, while its Lower Member 
is composed of volcaniclastic rocks (Matsumaru et  al. 
2006; Ehiro et  al. 2007). Terrigenous mudstone with 
thin sandstone beds and intercalations of sandstone 

Fig. 1  Geological map of Ladakh, India, showing sampling locations
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and mudstone are the characteristic lithology of the 
Callovian Tsoltak Formation (Ehiro et al. 2007).

The Ladakh batholith is a plutonic complex in the 
Trans-Himalaya zone that has been emplaced between 
100 and 40 Ma (Honegger et al. 1982; Ahmad et al. 1998; 
Kumar et al. 2007). It is wider in the northwestern parts, 
narrower in the southeastern parts, and runs about 
600  km long. It comprises I-type granitoid and minor 
amounts of noritic gabbro and diorite (Thakur and Rawat 
1992; Searle et  al. 1999). Minor amounts of rhyolitic to 
andesitic rocks of the Early Cretaceous to Late Eocene 
are also formed during the subduction of the Neo-
Tethys oceanic plate under the Eurasian continental plate 
(Sharma 1983; Jain et  al. 2002). Cretaceous to Tertiary 
ophiolite and ophiolitic mélanges constitute the NW–
SE-trending Indus suture zone (Ahmad et al. 1996, 2008; 
Robertson 2000; Kojima et  al. 2001; Upadhyay 1998). 
The molasse sequence varies from coarse conglomerates 
to shales and onlaps unconformably onto the Ladakh–
Kohistan batholith.

The Tethyan Himalayas, in the northern part of the 
Indian subcontinent, are dominated by Precambrian 
to Cretaceous fossiliferous sediments (Rao et  al. 2006). 
Quaternary deposits of river, glacier, lake, and eolian sed-
iments constitute the composite physiographical setup of 
the Upper Indus River Basin (URIB), with a large num-
ber of substantial alluvial fans, moraines, talus and scree 
cones, bajadas, dunes, and loose sediments creating a 
rough topography of the region (Lone et al. 2020). Dras, 
Suru, Zanskar, and Nubra sub-basins of UIRB, Ladakh, 
have the most significant glacial and eolian deposits in 
the region. Deep gorges, moraines, river cliffs, narrow 
V-shaped and U-shaped valleys, outwash plains, and 
waterfalls are the standard features in UIRB, Ladakh 
(Lone et al. 2021).

3 � Methodology
3.1 � In situ physicochemical measurements and water 

sample collections
Temperature, pH, TDS (total dissolved solids), salin-
ity, and conductivity in all these sites were measured by 
Thermo Scientific Orion Star (A329) Multi-parameter 
Water Quality Field Instrument. The thermal water 
samples were collected from high-altitude hotsprings 
of Changlung (Fig.  2a) and Panamik (Fig.  2b) (in the 
Nubra Valley, the northern part of Ladakh) and Chu-
mathang (Fig. 2c) and Puga (Fig. 2d) (in the Indus Val-
ley, the southern part of Ladakh) which are among 
the few active high-altitude hotspring sites across the 
globe (Fig.  3). The hotspring water sample was col-
lected in a 60-mL sterile polypropylene syringe, pre-
washed thrice with the same water. The collected water 
in the syringe was then passed into a Tarson 60-mL 

sterile polypropylene centrifuge tube through a fit-
ted Merck 0.22 µm filter. The initial filtered water was 
used to wash the centrifuge tube three times before the 
final sample collection. Similarly, nonthermal ground-
water samples were collected from the hand pumps 
nearest each hotspring site. The filtered water samples 
in the centrifuge tubes were stored in an ice box and 
transported to Birbal Sahni Institute of Palaeosciences 
(BSIP), Lucknow, for further analysis.

3.2 � GC–MS–MS analysis
Analysis was performed using a gas chromatograph cou-
pled to a quadrupole mass spectrometer (TSQ8000 EVO, 
Thermo Fischer Scientific Private Limited, USA). Separa-
tion on Gas chromatography was achieved using a DB-
5MS capillary column (30 m × 250 μm × 0.25 μm, Agilent 
Technologies) and a split/splitless injection port of 250 °C 
with a split ratio of 20:1. The column oven temperature 
program was initiated at 65  °C for 4  min, increased by 
4  °C/min to 210  °C, and held for 5 min with a run time 
of 56 min. High-purity helium (99.999%) was used as the 
carrier gas at a flow rate of 1 mL/min. The auto-injection 
volume was 10 μL. The GC–MS interface temperature 
was 300  °C with the electron ionization at 70  eV. The 
ionization source and the quadrupole mass analyzer tem-
peratures were set at 230 °C and 150 °C, respectively. The 
mass spectrometer was operated in full-scan mode, and 
the mass range was 20–450 AMU. The nonpolar organics 
were identified using the NIST11 library, and quantita-
tive results were processed with the Data Analysis Soft-
ware (Thermo Fischer Scientific Private Limited, USA). 
Retention time and the characteristic ions were used to 
confirm the target compounds, and the base peak (the 
most abundant ion) was used as the quantitative ion. The 
screening was conducted within an m/z range of 50 to 
800, with 50 as the lowest detectable m/z limit, using 2 µl 
of the sample over a run time of approximately 50.60 min. 
The equipment has a detection sensitivity of up to 0.5 fg 
for octafluoronaphthalene (OFN).

3.3 � Liquid–liquid extraction (LLE)
The nontarget extraction of organics in the water sam-
ple was using sequential extraction. A 50 mL water sam-
ple was extracted using 25 mL of n-hexane in a 250-mL 
separatory funnel by shaking vigorously for 5 min till the 
milky emulsion. The phase was allowed to separate, and 
the solvent layer was collected, pooled, and dried using 
anhydrous sodium sulfate. The extracted solvent fraction 
was then concentrated using a rotary evaporator to 1 mL, 
filtered through a 0.22  µm filter, and transferred to the 
amber color vial for GC–MS–MS analysis.
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4 � Results
4.1 � Physicochemical characterization of hotspring waters
Physicochemical parameters such as temperature, pH, 

TDS, salinity, and conductivity of the hotspring waters 
are provided in Table  1. Temperature variability among 
thermal waters of the investigated sites ranged from 

Fig. 2  Photographs of the hotspring sampling sites: a Changlung, b Panamik, c Chumathang, and d Puga. Photographs of the thermophilic 
microbial mats of various colors such as green, brown, black, yellow, and white at the e Changlung, f Panamik, g Chumathang, and h Puga
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50.4 to 84.9  °C. The pH value shows that the Chuma-
thang, Panamik, and Changlung hotspring waters were 
almost neutral (~ 7), whereas Puga hotspring waters were 
slightly alkaline. The TDS and salinity values were higher 
in the Changlung (TDS = 2880 ppm, salinity = 2630 ppm) 
and Chumathang (TDS = 1530 ppm, salinity = 1632 ppm) 
and lower in the Puga (TDS = 0.5 ppm, salinity = 69 ppm) 
and Panamik (TDS = 387 ppm, salinity = 429 ppm).

4.2 � Organic compounds in the hotspring waters
GC–MS–MS qualitative analysis of dissolved organic 
content in the hot spring waters of Chumathang, Pana-
mik, Changlung, and Puga reveals the presence of 60, 
56, 68, and 60 compounds, respectively (Table 2). These 
compounds belong to alkanes, alkenes, alkynes, ketones, 
alcohols, carboxylic acids, esters, aldehydes, benzenes, 
amides, azoles, phosphates, and phosphites (Fig.  4 and 
Table 2). The majority of the dissolved organic pool con-
sisted of alkanes, esters, alcohols, and carboxylic acids 

(Fig.  4 and Table  2). Several common and abundant 
organic compounds within this pool are classified as 
bioactive compounds including decanedioic acid, bis(2-
ethylhexyl)ester, phenol,2,5-bis(1,1-dimethylethyl)-, 
hexadecane, E-15-heptadecenal, n-hexadecanoic acid, 
7,9-di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-di-
one, dibutyl phthalate, 1-heneicosanol, phthalic acid, 
di(2-propylpentyl)ester, 13-docosenamide, (Z)-, 1,4-ben-
zenedicarboxylic acid, and bis(2-ethylhexyl)ester (Table 2 
and Supplementary Material 1). Nonthermal groundwa-
ter samples from nearby areas of the hotspring sites con-
tained a few silylated alkanes, i.e., traces of hexasiloxane, 
tetradecamethyl-, pentasiloxane, dodecamethyl-, silane, 
and [(1-methoxy-1,3-propanediyl)bis(oxy)]bis[trimethyl- 
(Table 3 and Supplementary Material 2).

The SI value of identified compounds was used to 
divide the compounds into four groups. The compounds 
showing SI > 900, 900–800, 800–700, and 700–600 were 
attributed as excellent match, good match, fair match, 
and below fair match (Table 2). Among the investigated 
sites, alkanes (6.6–7.6%), esters (23.9–54.1%), alcohols 
(6.5–13.5%), carboxylic acids (6.2–17.3%), aldehyde 
(2–2.7%), nitrogen-bearing compounds (2.1–32.3%), 
phosphorus–bearing compounds (1–4.6%), and alkenes 
(1.3–2.7%) formed the major groups of compounds in the 
thermal waters (Fig.  4b). Alkynes were detected only in 
the Chumathang hotspring, and aldehydes were detected 
only in the Chumathang and Puga hotsprings (Fig. 4a–b). 
The n-alkanes were dominated by low molecular weight 
C12 to C20 compounds. Among the few nitrogen-con-
taining compounds, 13-docosenamide, (Z)- was common 

Fig. 3  Global distribution of active high-altitude hotspring sites (Waring et al. 1965; Barbieri et al. 2014; Garzón et al. 2004; Munoz et al. 2015; Tang 
et al. 2018; Kidov et al. 2023). The scale is given in meters above mean sea level (a.s.l.)

Table 1  Altitude of the sampling sites (a.s.l.) and the 
physicochemical parameters of respective hotspring waters

Parameters Chumathang 
HS

Panamik HS Changlung 
HS

Puga HS

Elevation (m) 3988 3232 3376 4375

Temperature 84.9 °C 73.8 °C 73.6 °C 50.4 °C

pH 7.12 7.31 7.01 8.08

TDS 1530 ppm 387 ppm 2880 ppm 0.5 ppm

Salinity 1632 ppm 429 ppm 2630 ppm 690 ppm

Conductivity 3130 µS/cm 789 µS/cm 5370 µS/cm 0 µS/cm
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Table 2  List of the different groups of organic compounds detected in the Changlung, Chumathang, Panamik, and Puga hot spring 
water samples

Compounds Retention time (RT) Chumathang HS Panamik HS Changlung HS Puga HS

Esters

Oxalic acid, cyclohexyl propyl ester 6.44  +  +  + 
Oxalic acid, cyclohexyl ethyl ester 6.44  +  + 
2-Propenoic acid, tridecyl ester 25.66  +  + 
3-Chloropropionic acid, heptadecyl ester 25.66  + 
Phthalic acid, hept-3-yl isobutyl ester 29.17  +  +  + 
Phthalic acid, isobutyl 2,4,4-trimethylpentyl ester 29.18  +  + 
Dibutyl phthalate 31.08/31.09  +  +  +   +  +  +   +  +  + 
1,2-Benzenedicarboxylic acid, butyl 2-methylpropyl 
ester

31.08  + 

l-( +)-Ascorbic acid 2,6-dihexadecanoate 31.24  + 
Docosyl pentafluoropropionate 36.77/36.78  +  +   +  + 
3-Hydroxypropyl palmitate, TMS derivative 41.64  +   + 
Phthalic acid, di(2-propylpentyl) ester 42.21/42.22  +  +  +   +  +  +   +  +  +   +  +  +  + 
1,4-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester 44.04  +  +  +   +  +   +  +  +   +  + 
Decanedioic acid, bis(2-ethylhexyl) ester 44.46  +  +  +   +  +  +  +   +  +  +  +   +  +  +  + 
Alkanes

Dodecane 13.11  +  +   +  +   +  + 
Cyclopropane, 1-butyl-2-pentyl-, cis- 18.42  + 
Tetradecane 18.63  +  + 
Heneicosane, 11-(1-ethylpropyl)- 18.98/20.81  +   + 
Heptadecane 20.71  +  + 
Dodecane, 2,6,11-trimethyl- 20.8  +  +  + 
Tetradecane, 2,6,10-trimethyl- 21  +   +  + 
Hexadecane, 2,6,11,15-tetramethyl- 21.93/26.73  +  +   +  +  +   + 
Hexadecane 23.54/23.55  +  +  +   +  +  +   +  +   +  +  + 
Heptadecane, 2,6,10,15-tetramethyl- 25.77  +  +   +  + 
Tridecane, 6-propyl- 25.81  +  + 
Eicosane, 10-methyl- 26.73  +   +   +  +  + 
Octadecane 27.98  +  +  +   +   +  +  + 
Heptadecane, 2,6,10,14-tetramethyl- 27.99  +  + 
Eicosane 27.99/32.02  +  +  +   +   + 
Heptadecane, 9-hexyl- 30.20/34.61  +  +   +  +   +  +   + 
Heptadecane, 9-octyl- 30.2  +   + 
Octadecane, 5,14-dibutyl- 30.2  +   +  + 
Heneicosane 34.17  +  +   + 
Octadecane, 3-ethyl-5-(2-ethylbutyl)- 35.74/39.72  +   +  + 
Cyclotetracosane 40.71  +  + 
Eicosane, 7-hexyl- 40.78  +  +  + 
Heptadecane, 2,3-dimethyl- 43.74  +  + 
CPI 0.00 0.43 0.25 0.06
AVL 18.74 18.76 19.08 16.41
Alkenes

1,3-Cyclopentadiene, 5-(1-methylpropylidene)- 6.31  + 
Mesitylene 7.2  + 
5-Octadecene, (E)- 23.36  +  +  + 
7-Hexadecene, (Z)- 23.37  +  +  + 
1-Octadecene 27.84  +  +  + 
3-Eicosene, (E)- 31.9  +  +  + 
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(based on the area %) and made the largest fraction of 
the total dissolved organic carbon pool in the Panamik 
hotspring waters (Fig. 4b and Table 2). The carbon pref-
erence index (CPI = Relative abundance of odd carbon 

number n-alkane/relative abundance of even carbon 
number n-alkane) and average chain length [(ACL) aver-
age number of carbons] for n-alkane ranged from 0 to 
0.43 and from 16.41 to 19.08, respectively. Four silylated 

Table 2  (continued)

Compounds Retention time (RT) Chumathang HS Panamik HS Changlung HS Puga HS

Heptacos-1-ene 40.71  +  + 
Nonacos-1-ene 40.72  +  +  + 
10-Heneicosene (c,t) 42.86  +  +  +   + 
Squalene 44.58  +  + 
Alkyne

1-Hepten-5-yne, 2-methyl-3-methylene- 6.32  + 

Alcohols and phenols

2,4-Di-tert-butylphenol 21.26  +  +  +   +  +  +   +  + 
Phenol, 2,5-bis(1,1-dimethylethyl)- 21.26  +  +  + 
1-Hexadecanol 23.36  +  +  + 
Hexadecen-1-ol, trans-9- 23.37  +  +  + 
n-Nonadecanol-1 27.84  +  + 
1-Heneicosanol 31.9  +  +  +   +  +  + 
2,6-Dimethyl-1-nonen-3-yn −5-ol, TMS derivative 32.19  + 
n-Tetracosanol-1 36.77/36.78  +  +   +  +  + 
1-Dodecanol, 2-octyl- 36.77  +  +  + 
[1,1ʹ-Biphenyl]−2,3ʹ-diol, 3,4ʹ,5,6ʹ-tetrakis(1,1-
dimethylethyl)-

40.03  + 

1-Heptacosanol 42.86  +  + 
Carboxylic acids

n-Hexadecanoic acid 31.23/31.24  +  +   +  +   +  +   +  + 
Palmitic acid, TMS derivative 32.9  +  +   + 
Octadecanoic acid 35.73/35.74  +  +   +   + 
Aldehyde

E-15-Heptadecenal 27.84  +  +  +   +  +  + 

Ketones

2,5-Cyclohexadiene-1,4-dione, 2,6-bis(1,1-dimethylethyl)- 20.18  + 
7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-di-
one

30.08/30.09/30.10/30.11  +  +   +   +  +   +  + 

Ether

Hexadecane, 1,1-bis(dodecyloxy)- 18.88  + 

Benzenes

Benzene, 1-ethyl-3-methyl- 6.31/7.99  +   +  + 
Benzene, 1,2,4-trimethyl- 7.2  + 

1-Cyclohexyldimethylsilyloxy-3,5-dimethylbenzene 39.57  + 
Phosphorus-bearing compounds

Triethyl phosphate 10.75/10.77  +   +  +  + 
Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) 50.62  +   +   +  + 

Tris(2,4-di-tert-butylphenyl) phosphate 53.96  +   +   + 

Nitrogen-bearing compounds

Cyclohexanespiro-5ʹ-(2ʹ,4ʹ, 4ʹ-trimethyl-2ʹ-oxazoline) 6.44  +  +   +  + 
Benzothiazole, 2-(2-hydroxyethylthio)- 32.19  + 
13-Docosenamide, (Z)- 44.33/44.36  +  +  +   +   +  +   +  +  + 

In the table, +  +  +  + , +  +  + , +  + , and + denote excellent match, good match, fair match, and below fair match, respectively. Bioactive compounds are highlighted by 
the bold text. The CPI and ACL denote the carbon preference index and average chain length, respectively
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alkanes detected in the nonthermal groundwaters were 
identified under the fair match category, and the rest 
were identified under the below fair match category. 
Thermal waters exhibited some variations in the compo-
sition of the organic compound groups despite the overall 
similarities in the dissolved organic pools of these waters.

5 � Discussion
The organic compound composition of high-altitude hot-
spring waters (> 3200 m a.s.l.) in Ladakh reveals a distinct 
pattern when compared to the organic profiles observed 
in low-altitude hotspring waters (< 3000  m a.s.l.) across 
various global regions (Table 4). In the Ladakh hotspring 
waters, esters, carboxylic acids, alcohols, amides, and 
alkanes make up the majority of the dissolved organic 
pool (Fig. 4a, b), with esters comprising up to 54.1% and 
amides comprising up to 32.3% of the total dissolved 
organic compounds. Among the 27 compounds are rec-
ognized as bioactive compounds or bacterial secondary 
metabolites (Tables  3 & 4). This finding does not align 
with the major dissolved organic composition of low-alti-
tude hotspring waters (Table 4).

The organic compound profiles available from low-
altitude terrestrial hotsprings in regions such as Spain 
(González-Barreiro et  al. 2009), Hungary (Kárpáti et  al. 
1999), Italy (Gioia et al. 2006), Russia (Poturay and Kom-
panichenko 2019; Kompanichenko et  al. 2016), and the 
USA (Clifton et al. 1990) exhibit a different composition, 

with notably lower proportions of esters and the absence 
of phosphorus-bearing organic compounds. For instance, 
the proportion of esters in low-altitude hotspring waters 
does not exceed 20.7% and the number of bioactive com-
pounds identified in these waters is up to 12 (Table  4). 
These differences can be attributed to variations in envi-
ronmental conditions, microbial activity, and the chemi-
cal composition of the surrounding geology.

In Ladakh, the high-altitude hotspring waters not 
only contain a higher proportion of esters but also fea-
ture phosphorus-bearing organic compounds (up to 
4.6%) (Table  4). Phosphorus-bearing compounds are 
key indicators of biogeochemical cycling in microbial 
ecosystems, particularly communities in geothermal 
environments (Soo et al. 2017; Gupta et al. 2013). The rel-
atively higher abundance of esters and phosphorus-bear-
ing compounds suggests a unique microbial influence or 
distinct biochemical pathways in these extreme environ-
ments, possibly linked to the adaptation of thermophilic 
organisms to the harsh high-altitude conditions.

The presence of 27 bioactive compounds that com-
pose 38 to 98% of the total dissolved organic content in 
the high-altitude hotspring waters of Ladakh is another 
significant observation. Bioactive compounds, including 
antimicrobial agents, are frequently associated with ther-
mophilic bacteria and archaea found in hot springs (Gid-
dings et al. 2015; Al-Daghistani et al. 2021; Banerjee et al. 
2023). These compounds may serve ecological functions, 

Fig. 4  Bar plot for the a number and b relative abundance of organic compounds of different groups in the Changlung, Chumathang, Panamik, 
and Puga hotspring water samples
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such as defense mechanisms or chemical signaling (Pri-
hantini et  al. 2018; Al-Daghistani et  al. 2021), and their 
high concentration in Ladakh’s hotspring waters suggests 
a unique microbial synthesis or metabolic process at the 
high-altitude hotspring sites.

While the composition of dissolved organic com-
pounds in Ladakh hotsprings is distinct, it bears some 
similarities to other high-temperature environments 
where organic compounds of biogenic origin—such 
as alcohols, ketones, aldehydes, carboxylic acids, and 
esters—are commonly found (Table  4). Thermophilic 
bacteria, which thrive in the extreme conditions of geo-
thermal springs, are known to produce a wide variety of 
organic compounds through fermentation, respiration, 
and other metabolic processes (Zeikus 1979; Takai et al. 
2005; Tang et  al. 2009; Kristjansson and Stetter 2021; 
Amend and Shock 2001). In the case of Ladakh, the pre-
dominance of carboxylic acids, esters, and n-alkanes in 
the dissolved organic pool (Table  2) strongly supports 
the idea that thermophilic bacteria and their degradation 

products are major contributors to the organic composi-
tion of these waters.

The presence of thermophilic biofilms at the study sites 
(Fig. 4e–h) further reinforces the hypothesis that micro-
bial activity plays a crucial role in shaping the organic 
compound profile of the Ladakh hotspring waters. Bio-
films in geothermal systems are known to be rich in 
microbial communities that contribute significantly to 
the local chemical environment by producing or modi-
fying organic compounds (Sand 2003; Álvaro et al. 2021; 
Lerm et al. 2013). These biofilms can alter the composi-
tion of the dissolved organic pool by secreting extracellu-
lar polymeric substances (EPS) and releasing metabolites 
that interact with the surrounding environment.

Furthermore, the detection of a small number of 
silylated organic compounds in local nonthermal ground-
waters provides an intriguing contrast to the hot spring 
waters. Silylated organic compounds are typically associ-
ated with certain chemical reactions, such as silanization. 
Their presence in nonthermal groundwaters suggests that 

Table 3  List of the organic compounds observed in the nonthermal groundwater samples from the hand pumps near the 
Changlung, Chumathang, Panamik, and Puga hot spring sites

In the table, +  +  +  + , +  +  + , +  + , and + denote excellent match, good match, fair match, and below fair match, respectively

Compounds Retention time 
(RT)

Chumathang 
HS

Panamik HS Changlung HS Puga HS Chumathang 
GW

Panamik GW Taksha GW Puga GW

Silane, [(1-methoxy-
1,3-propanediyl)bis(oxy)]
bis[trimethyl-

6.41  +  +   +  +   +  + 

Cyclotetrasiloxane, octa-
methyl-

7.3  + 

Methyltris(trimethylsiloxy)
silane

9.14/9.81  +   + 

4-Tert-octylphenol, TMS 
derivative

9.81  + 

Tetrasiloxane, decamethyl- 9.81  +  + 

Pentasiloxane, dodecamethyl- 13.91/16  +  +   +  +   + 

Trisiloxane, 1,1,1,5,5,5-hexa-
methyl-3,3-bis[(trimethylsilyl)
oxy]-

16  + 

Hexasiloxane, tetradeca-
methyl-

21.56/21.57  +  +   +   +  +   +  + 

Cycloheptasiloxane, tetra-
decamethyl-

24.02  + 

Heptasiloxane, hexadeca-
methyl-

26.49/26.50  +   +   +   +   +   + 

Heptasiloxane, 
1,1,3,3,5,5,7,7,9,9,11,11,1 
3,13-tetradecamethyl-

26.5  + 

Cyclooctasiloxane, hexadeca-
methyl-

28.82  + 

Cyclononasiloxane, octadeca-
methyl-

32.99  + 

Octasiloxane, 
1,1,3,3,5,5,7,7,9,9,11,11,1 
3,13,15,15-hexadecamethyl-

39.93  +   +   +   + 

Cyclodecasiloxane, eicosa-
methyl-

45.35/46.31  +   +   +   + 
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different geochemical processes might be at play in non-
thermal aquifers compared to the more dynamic and bio-
logically active hotspring environments.

5.1 � Alkanes
A comparative analysis of the dissolved organic param-
eters, particularly the distribution of n-alkanes, between 
high-altitude hotsprings (e.g., those in Ladakh) and low-
altitude hotsprings reveals significant variations in the 
composition and structural characteristics of carbon 
compounds. One critical parameter in this compari-
son is the CPI, which provides insights into the sources 
and transformation processes of organic matter. In low-
altitude hotsprings, CPI values are typically ≥ 1, indicat-
ing either a lack of odd–even preference (CPI ≈ 1) or a 
distinct preference for odd carbon number n-alkanes 
(CPI > 1). This pattern is often associated with biogenic 
sources, particularly terrestrial organic matter such as 

vascular plant waxes, which contribute significantly to 
the organic inputs in these environments (Bray and Evans 
1965).

In contrast, the CPI values of n-alkanes in high-alti-
tude hotsprings, such as those in Ladakh, are consist-
ently ≤ 0.43, reflecting a strong preference for even 
carbon number n-alkanes. This suggests the dominance 
of thermogenic processes in these high-altitude systems, 
where hydrocarbons are significantly altered by extreme 
geothermal activity, pressure, and temperature. Such 
conditions favor the synthesis of even carbon number 
n-alkanes, potentially originating from inorganic carbon 
sources or microbial activity adapted to these harsh envi-
ronments (Peters et al. 2005).

Several factors may contribute to these differences. 
The distinct geothermal dynamics of high-altitude hot-
springs, characterized by steeper thermal gradients and 
more extreme pressure conditions, significantly influence 

Table 4  Comparative tables for elevation, physicochemical, and dissolved organic characteristics for the high-altitude (> 3000 m a.s.l.) 
and low-altitude hot springs (< 3000 m a.s.l.)

In this table, NA denotes that data were not available, and ND denotes that the compound was not present or below the detection limit

Parameters Low-altitude hotsprings High-altitude 
hotsprings

Yellowstone National 
Park, USA
(Clifton et al. 1990)

Urup Island and 
Uzon Caldera, Russia
(Kompanichenko 
et al. 2016; Poturay 
and Kompanichenko 
2019; 
Kompanichenko and 
Poturay 2022)

Calabria 
region, 
Italy
(Di Gioia 
2006)

Pannonian 
Basin, 
Hungary
(Kárpáti et al. 
1999)

Ourense, Spain
(González-Barreiro 
et al. 2009)

Ladakh, India (this 
study)

Elevation 2220 m < 998 m < 370 m 400 m 90–115 m 3232–4375 m

pH 6–8 3–9 NA NA 7.5–8.5 7–8

Temperature 40°–80 °C 50°–90 °C NA 50°–60 °C 45°–66 °C 50°–85 °C

Total number of com-
pounds

NA 95 7 23 70 88

Major groups Alkanes, aromatics, 
alcohols, and carbox-
ylic acids

Alkanes, aromatics, 
ketones, alcohols, 
carboxylic acids

Alcohols Aromatics Aldehydes, esters, 
ketones

Alkane, esters, 
carboxylic acids, 
alcohols, alkenes

Alkanes (%) < 83 < 41.8 NA < 0.4 < 8.2 < 7.6

Alcohols (%) NA < 29.4 NA < 18.3 < 15.3 < 13.8

Aldehydes (%) NA < 4.1 NA ND < 3.2 < 2.7

Carboxylic acids (%) NA < 18.9 NA < 21.9 < 16.3 < 10.1

Esters (%) NA ND NA ND < 20.7 < 54.2

Nitrogen-bearing 
compounds (%)

NA ND NA ND < 40.8 < 32.3

Phosphorus-bearing 
compounds (%)

NA ND ND ND ND < 4.6

Cmax (n-Alkane) C23 C11 NA NA NA C19

CPI (n-Alkane) 1 > 1 > 1 NA NA < 0.43

Number of bioactive 
compounds

Absent 12 Absent Absent 8 27

Proportion of bioac-
tive compounds (%)

NA NA NA NA NA 38.5–98.1
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organic compound formation pathways (Tissot and 
Welte 2013). Additionally, the source of organic matter 
plays a pivotal role. Low-altitude hotsprings are typically 
surrounded by vegetation, which introduces terrestrial 
organic matter, enriching these waters with odd carbon 
number n-alkanes (Seki et  al. 2010). In contrast, high-
altitude regions like Ladakh are sparsely vegetated, and 
organic matter inputs primarily derive from microbial 
activity, geological processes, or atmospheric deposition.

Microbial and biogeochemical processes further shape 
these differences. High-altitude microbial communi-
ties adapted to extreme conditions may preferentially 
degrade odd carbon number n-alkanes or synthesize 
even carbon number ones, contributing to the lower 
CPI values observed (Pu et  al. 2017; Finkel et  al. 2023). 
Thermal alteration processes, facilitated by high tem-
peratures and pressures, also play a significant role in 
modifying organic matter in these systems. Environ-
mental conditions at high altitudes, including intense 
UV radiation and lower oxygen levels, can influence the 
chemical structure and stability of dissolved organic mat-
ter, contrasting with the milder conditions of low-altitude 
springs that preserve more biogenic signatures (Brocks 
and Pearson 2005).

These findings highlight how high-altitude and low-
altitude hotsprings reflect fundamentally different 
sources and transformation pathways of dissolved organ-
ics. While low-altitude hot springs exhibit signatures of 
biogenic influence with odd carbon number n-alkane 
dominance, high-altitude hotsprings like those in Ladakh 
show evidence of thermogenic processes, marked by even 
carbon number n-alkane preference. These differences 
provide crucial insights into carbon cycling, thermal 
alteration processes, and the role of extreme environ-
ments in shaping organic matter characteristics.

5.2 � Major bioactive compounds: high‑altitude vs 
low‑altitude hotspring waters

An essential source of organic compounds in hotspring 
waters could be bioactive molecules produced by ther-
mophiles thriving at a temperature > 45  °C (Al-Dhabi 
et  al. 2016; Prihantini et  al. 2018; Deamer et  al. 2019; 
Tyagi et  al. 2024, 2021; Yan et  al. 2017; Aissaoui et  al. 
2021; Al-Daghistani et  al. 2021). Secondary metabolites 
include amines, alkaloids, fatty acids, glycoproteins, phe-
nols, etc. These secondary metabolites possess medici-
nal values such as antifungal, antibacterial, anti-HIV, 
anticancer, anti-inflammatory, and antiulcer properties 
(Prihantini et  al. 2018; Al-Daghistani et  al. 2021). How-
ever, most of these secondary metabolites have so far 
been reported from the pure laboratory-based cultures 
of thermophilic bacteria (Prihantini et al. 2018; Al-Dhabi 
et  al. 2016; Deamer et  al. 2019; Tyagi et  al. 2021, 2024; 

Yan et al. 2017; Aissaoui et al. 2021; Al-Daghistani et al. 
2021).

Extremophiles exhibit a range of physiological and 
molecular adaptations, such as the production of extrap-
olates, ice-nucleating proteins, pigments, extremozymes, 
and exopolysaccharides (Rawat et al. 2024). Key limiting 
factors include osmotic and hydrostatic pressure, solar, 
terrestrial, and cosmic radiation, oxidative stress, and 
nutrient availability (D’Amico et  al. 2006). As a result, 
some of the significant adaptations involve strategies for 
surviving extreme conditions through the use of special-
ized proteins and lipid membranes that maintain cellu-
lar integrity (Chauhan et al. 2023; De Maayer et al. 2014; 
Musilova et  al. 2015; Ghosh et  al. 2023). The chemicals 
and enzymes produced under such extreme conditions 
are chemically and physically more stable (Mashakhetri 
et al. 2024; Barzkar et al. 2024).

When compared to bioactive compounds reported 
in low-altitude hotsprings from regions like Spain 
(González-Barreiro et  al. 2009), Hungary (Kárpáti et  al. 
1999), Italy (Gioia et al. 2006), Russia (Poturay and Kom-
panichenko 2019; Kompanichenko et  al. 2016), and the 
USA (Clifton et  al. 1990), Ladakh’s high-altitude hot-
springs were found to contain a higher number and 
greater variety of bioactive compounds (Tables  3 & 4). 
The high-altitude hotsprings of Ladakh present a unique 
environment that could explain the increased diversity 
of dissolved bioactive compounds found in their waters. 
These extreme conditions, including intense ultraviolet 
(UV) radiation, arid climates, low atmospheric pressure, 
low oxygen levels, and significant seasonal temperature 
fluctuations, create a harsh habitat that pushes the lim-
its of biological life. In such an environment, organisms 
must adapt to these stressors, potentially leading to the 
production of a wider array of bioactive compounds as 
survival mechanisms. In contrast, low-altitude hotsprings 
typically experience milder environmental conditions, 
such as more stable temperatures, lower UV radiation, 
and a more temperate climate. These conditions impose 
fewer selective pressures on the organisms that live 
there, resulting in a less diverse array of bioactive com-
pounds (Kompanichenko et  al. 2016; González-Barreiro 
et al. 2009). The organisms in such environments do not 
need to produce the same level of biochemical diversity 
to cope with stress, as the environment offers fewer chal-
lenges to survival. Thus, the unique combination of high-
altitude stressors in Ladakh’s hot springs fosters a greater 
diversity of bioactive compounds. The organisms in these 
hotsprings have adapted in ways that might provide valu-
able insights into how life can thrive in extreme environ-
ments such as the hotsprings of Mars, which were once 
active. These adaptations not only highlight the resilience 
of life but also open up possibilities for discovering novel 
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compounds that could have applications in medicine, 
agriculture, and biotechnology, as well as could serve as 
a biomarker for the search for life on Mars. Some of the 
major bioactive compounds detected in the hotspring 
waters of Chumathang, Panamik, Changlung, and Puga 
are given below.

5.2.1 � Decanedioic acid, bis(2‑ethylhexyl)ester
This compound was detected in the thermal waters of 
all the four hotspring sites. It is commonly known for 
its antimicrobial and antifungal properties. Pure labora-
tory culture study of bacteria Bacillus thermotolerance 
(DHT 26), Bacillus cereus (Tambekar et  al. 2017, 2014) 
isolated from Lonar Lake, and endophytic bacteria Bacil-
lus atrophaeus isolated from medicinal plant G. uralen-
sis (Li et al. 2018) have demonstrated the release of this 
compound as a secondary metabolite. In addition, this 
compound has been detected in the extract of freshwa-
ter filamentous green alga Spirogyra elongate (Abdel-
Aal et  al. 2015) and shrubs such as Alhagi mannifera 
(Fabaceae family) (Jaradat et  al. 2022) and Carthamus 
oxycantha (Asteraceae family) (Rafiq et al. 2017).

5.2.2 � Phthalic acid, di(2‑Propylpentyl)ester
This compound was found in the thermal waters of all the 
four hotspring sites. Recently, this compound was discov-
ered in the pure laboratory culture of the marine bacteria 
Streptomyces sp. (Al-Dhabi et al. 2020; Chakraborty et al. 
2022). The extract of aquatic cyanobacteria Leptolyngbya 
sp. and Desertifilum sp. (Shawer et al. 2022) and endos-
ymbiotic bacteria Bacillus atrophaeus (Mohamad et  al. 
2018) has also been discovered to synthesize this com-
pound. This compound has demonstrated antibacterial, 
antifungal, anti-inflammatory, and anticancer properties 
(Oludare and Gamberini 2019; Chakraborty et al. 2022).

5.2.3 � 4‑Benzenedicarboxylic acid, bis(2‑ethylhexyl)ester
This compound was detected in the thermal waters of 
all the four hotspring sites. It has been reported in the 
extract of fungi Arthrobotrys oligospora (Bahena-Nuñez 
et  al. 2024), Aspergillus flavipes strain (Verma et  al. 
2014), Aspergillus unguis (Sajna et al. 2020), in the extract 
of cyanobacteria (Li et  al. 2021), marine algae Padina 
boergesenii and Polycladia Myrica (Ramezanpour et  al. 
2021), and hydrothermally treated sludge. It is known for 
antibacterial, antifungal, nematocidal activity, and anti-
cancer properties (Verma et al. 2014).

5.2.4 � 13‑Docosenamide, (Z)
This compound was detected in the thermal waters of all 
the four hotspring sites. It has been detected in halophilic 

Bacillus sp. (Donio et  al. 2013; Nas et  al. 2021) and in 
marine algae T. suecica (Abu-Hussien et  al. 2022). It is 
also found associated with the succession of Flavobac-
terium and the inhibition of nitrifying bacteria (Nitroso-
monas and Nitrospira) (Fan et  al. 2024). According to 
Fan et al. (2024), this bioactive compound is essential for 
bacterial and algal cell contact and the development of 
synergy between the two, while cell contact lessens the 
antagonistic effects. 13-Docosenamide, (Z) is well known 
for its potent antiviral, antifungal, and anticancer activi-
ties (Donio et al. 2013; Nas et al. 2021; Chen et al. 2018).

5.2.5 � n‑Hexadecanoic acid
This compound was detected in the thermal waters of 
all the four hotspring sites. N-hexadecanoic acid is com-
monly reported in thermophilic bacteria (Merkel and 
Perry 1977), bacterial cells of the microbial mat from the 
marine intertidal region (Scherf and Rullkötter 2009), 
marine algae (Zakaria et al. 2011; Thirunavukkarasu et al. 
2014), and freshwater algae (Shawer et  al. 2022). Many 
cyanobacteria and photosynthetic algae have high con-
centrations of n-octadec-9(Z)-enoic acid in their fatty 
acid composition, which is dominated by n-hexadeca-
noic acid (Chuecas and Riley 1969; Grimalt et al. 1992). 
It shows antibacterial and antifungal (Zakaria et al. 2011; 
Shobier et al. 2016; Karthikeyan et al. 2014).

5.2.6 � 9‑Di‑tert‑butyl‑1‑oxaspiro(4,5)
deca‑6,9‑diene‑2,8‑dione

This compound was detected in the thermal waters of 
all the four hotspring sites. It has been reported in ther-
mophilic cyanobacteria Leptolyngbya sp. (Tyagi et  al. 
2024), cave-dwelling bacteria Streptomyces sp. (Fatima 
et al. 2021), halophilic bacteria Brevibacillus borstelensis 
(Hamedo et al. 2023), etc. This compound has also been 
reported in crude oils (Goma-Tchimbakala et  al. 2022) 
and marine sediments (Chakraborty et al. 2022). It shows 
antiplatelet and antioxidant properties (Kumar et  al. 
2023) and is also reported to be beneficial in cancer treat-
ment (Hamedo et al. 2023).

5.2.7 � 4‑Di‑tert‑butylphenol
This compound is found in the thermal waters of Pana-
mik, Changlung, and Puga hotspring sites. The com-
pound has been reported from the thermophilic bacteria 
Bacillus licheniformis (Aissaoui et al. 2019), other gram-
positive and gram-negative bacteria (Viszwapriya et  al. 
2016; Dharni et al. 2014; Varsha et al. 2015; Belghit et al. 
2016; Sang and Kim 2012), and cyanobacteria Leptol-
yngbya sp. (Tyagi et  al. 2021; Zhang 2018). This phe-
nolic compound possesses various biological properties, 
including antioxidant, antifungal, antibacterial, and 
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anticancer properties (Dharni et  al. 2014; Varsha et  al. 
2015). Additionally, there are mentions of antioxidant 
and anticancer effects (Varsha et  al. 2015; Choi et  al. 
2013).

5.2.8 � 5‑Bis(1,1‑dimethylethyl)phenol
This compound was detected only in the thermal waters 
of the Chumathang hotspring site. It has been reported 
from thermophilic cyanobacteria Leptolyngbya sp. (Tyagi 
and Singh 2020) and in the extract of Streptomyces sp. It 
is known for antibacterial activity.

5.3 � Implications for the search for life on Mars
A review by Ansari (2023) demonstrated that organic 
geochemical analysis of Martian surface rocks has so far 
been random and requires a more focused approach, i.e., 
which rocks should be targeted? What kind of organic 
compounds should be expected in those rocks? This 
information will be crucial in preparing our next mis-
sion to Mars and collecting suitable rock samples, which 
are expected to reach Earth with the Mars sample return 
mission. Hence, ideas about the ideal target for search-
ing for life-associated organic molecules (biomarkers) 
on the Martian surface have been proposed. Widespread 
hydrous opaline silica and carbonate deposits around 
prehistoric hydrothermal sites on the Martian surface 
(Farmer et al. 1996), such as Nili Patera Caldera, Nili Fos-
sae, Leighton Crator, and Gusev Crator of Mars, are iden-
tified as one of the best targets (Cady et al. 2018; Brown 
et al. 2010; Parnell et al. 2002; Niles et al. 2013; Michalski 
and Niles 2010; Michalski et al. 2018).

These sites are likely to contain entrapped fluid inclu-
sions, remnants of hydrothermal fluid discharge from 
the time when the respective hydrothermal system was 
active (Parnell et  al. 2002). These inclusions are gener-
ally expected to be < 5 μm in size, but the ability to extract 
information from the fluids—such as biosignatures and 
actual remains of living organisms—highlights the ben-
efits of technical advancements in studying fluid inclu-
sions. Assume that a similar microbial life would have 
inhabited the hydrothermal sites on the Martian surface 
in the past. We expect to find the compounds that we see 
in hotspring waters in similar environments on the Earth 
such as diverse bioactive compounds that we detected in 
our study of high-altitude hotspring waters of Ladakh. 
Accordingly, the instruments should be standardized, 
and methods should be refined for the on-site detection 
of these organic compounds.

Crushing large samples may release inclusion fluids for 
on-site analysis on Mars. Existing methodology for the 
in-situ study of the Martian surface has already applied 
mass spectrometry, including its application for the 
detection of particular organic molecules (Biemann et al. 

1977; Lauer et  al. 2009; Leshin et  al. 2013; Ming et  al. 
2014; Eigenbrode et al. 2018; Freissinet et al. 2015; Millan 
et al. 2022a, 2022b; Szopa et al. 2020; Glavin et al. 2013). 
The development of microfluidic devices, which can be 
linked to mass spectrometers, will enable the administra-
tion of chemicals to assist in cleaning up the module and 
extraction of particular types of compounds (specially 
compounds commonly detected in hotspring waters 
and deposits) through online microdialysis (Parnell et al. 
2002).

6 � Conclusion
The study revealed the presence of diverse organic com-
pounds in the high-altitude hotspring waters of Ladakh. 
They are predominantly biogenic in origin, either directly 
released by living bacteria or recycled products of dead 
organic matter via thermogenic processes. This study 
shows a diverse range of bioactive compounds with high 
medicinal properties, such as antibiotic, antifungal, anti-
viral, and anticancer. The high diversity of the bioactive 
compounds was most likely associated with the multi-
ple extreme environmental factors that are unique to the 
high-altitude hotsprings of Ladakh. Assuming that the 
relict hydrothermal sites with widespread deposition of 
opaline silica and carbonates had once hosted a similar 
microbial life, this suit of bioactive compounds can be 
used as a standard biomarker for searching for evidence 
of extinct life in that area on Mars. Hence, for future mis-
sions dealing with the in  situ biomarker exploration in 
hydrothermal opaline silica and carbonate deposits on 
Mars, this suit of organic compounds may be used to pre-
pare the respective methodology.
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